Chapter 1

Vector spaces and linear

mappings

Vector spaces are probably the most useful mathematical structure in eco-
nomics and finance, as in many other scientific fields. Elements of vector
spaces are called vectors and the reader already knows this mathematical
object, at least in an intuitive way. In fact, we live in a 3-dimensional vector
space and, as a good approximation, the page you are now reading is part of
a 2-dimensional vector space.

In finance and economics, vectors are generally characterized by more
than 2 or 3 coordinates, and in some cases they are elements of infinite-
dimensional vector spaces. Whatever the case, it is fundamental to master
these mathematical tools because they are important in a number of applica-
tions like arbitrage pricing, portfolio choice, and empirical studies in general.

Section I presents the definition of a vector space and its elementary
properties. In the beginning of the chapter, we restrict the presentation to
finite-dimensional spaces that are natural generalizations of the 2 and 3-
dimensional spaces we are used to. The mathematical concept of a wvector
space is illustrated by means of the economic concept of a complete market.

The second section of the chapter develops the properties of linear map-
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pings. Linear mappings are fundamental components of arbitrage pricing
models. Representation of linear mappings by matrices is developed in sec-
tion 3 and the special case of square matrices is addressed in more details. In
particular, we present the diagonalization of square matrices and the notions

of eigenvalues and eigenvectors.

Norms and inner products, arising naturally in valuation models, are
developed in section 1.4 and their properties are discussed in the general
framework of Hilbert spaces in section 1.5. Finally, section 1.6 presents
separation theorems and Farkas lemma. In financial theory, these results
allow to link the no-arbitrage assumption to the existence of a risk-neutral

probability measure' in an economy with a finite number of states of nature.

1.1 Vector spaces : definitions and general

properties

1.1.1 Definition and examples of vector spaces

Definition 1 A vector space is a set E of elements, called vectors, that
can be added (addition is denoted "+" as usual) and multiplied by real num-
bers (multiplication by a number is denoted "."). E satisfies the following
properties:

1) (E,+) is a commutative group®

2)Y(a,B) ER? Vu€eE

a(fu) = (af).u (associativity)

!See Roger, P., Probability for Finance, 2010.
2Tt means that + is associative, has an identity element denoted 0, and any element u
has an inverse denoted —u satisfying u 4+ (—u) =0
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3)V(a,B) ER? Vue€E,

(a+p8)u=aut+pu (distributivity with respect to the addition in R)
4)Va eR, V(u,v)e E?

a.(u+v) = cutaw (distributivity with respect to the addition in E.)
5)Vu e E, lu=u

Remark : The identity element for addition is the null vector denoted 0
(in bold characters for the moment to avoid possible confusion with the real

number 0).

Example 2 R is a vector space, endowed with the usual addition and the
usual multiplication. The above remark concerning the notation of 0 appears
to be important here because the number 0 is simultaneously the real number
0, and the identity element of the addition for the vector space R. We let the
reader check that R satisfies the statements of definition 1.

Deloitte.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affliated entities.

Download free eBooks at bookboon.com &\5«\

Click on the ad to read more


http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Example 3 Let R" denote the set of n—uples® ' = (x1, %o, ..., T,) where

x; € R for any i; R™ is a vector space if addition is defined by:

1 Y1 1+

x To +
r4y— 2 X Y2 _ 2 T Y2

Tn Yn Tn + Yn

and the product by a scalar is defined by:

T AT

To (64 ))
a.r =« =

Tn axy,

where o € R.

The vector space R" is the natural generalization of the usual 2 and 3-

dimensional spaces.

Example 4 Let E be a vector space and A(E) be the set of mappings® from
E toR; A(FE) is a vector space if addition and product by a scalar are defined

as follows:

(f +9) (u) = f(u) + g(u)

() (u) = af () ()

Y(f,9) € A(E),Yu € E, {

Though these definitions seem intuitive, the space A(E) is much more

complex than the vector space R"; in particular, a vector f € A(F) cannot

3Without precision, z denotes a column vector. x’ (with a prime) is the corresponding
row vector called the transpose of x. These notations are consistent with the notations for
matrices in part I of the book.

4Mappings have been defined in chapter 1 of part I of the book.
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be described by a finite set of real numbers because it is a mapping from F
to R.

1.1.2 Vector subspaces

Definition 5 Let E be a vector space and F a subset of E; I' is a vector
subspace of E if, for any a« € R and any v € F, a.v € F, and if conditions
(2) to (5) of definition 1 are satisfied for F, when addition and multiplication

by a real number ("+" and ".") are restricted to F.

Definition 5 looks complex but its meaning is simple. F' is a vector sub-
space of F if F' is itself a vector space when it is endowed with the same
addition of vectors and the same product by a real number (meaning that
a.v should stay in F'if v € F and u + v is in F' if v and v are in F).

The following proposition provides a simple criterion to check if a subset

of E is a vector subspace.

Proposition 6 Let E be a vector space and F a subset of E; F is a vector

subspace of E if and only if:
Y(a,B) € R? VY(u,v) € F?au+pBuveF
Example 7 Let E = R? and F, a subset of E defined by:
Fi={x€FE/z+xy+x3=0}

It is obvious to prove that if two vectors x and y in E satisfy the condition
"the sum of their coordinates is zero", any combination o.x+ 5.y also satisfies
the condition, («, [3) being a couple of real numbers. Therefore Fy is a vector
subspace of E. In the same way, consider the subset Fy = {0} which contains
only the vector 0. It is the smallest vector subspace of E and the only one

containing a single vector.
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Therefore, 0 belongs to any vector subspace of E and any intersection of
vector subspaces contains at least the vector 0. This remark is generalized in

the following proposition.

Proposition 8 Any intersection of vector subspaces of E is a vector sub-

space of E.

To illustrate this proposition, let F3 = {x € E / 21 — 225 + 3z3 = 0} and
show that F} () F3 is a vector subspace de R3. You can use proposition 6.
On the opposite, show that F | F3 is not a vector subspace (Hint. choose
u! € F} and v® € Fy satisfying u' + v® ¢ Fy | F3).

This latter question shows that, in general, the union of two vector sub-
spaces is not a vector subspace (denoted V.S hereafter)

On the contrary, if we define Fi3 as follows:
Flgz{x€R3/ xzy+zw1thy€F1 andzEFg}

then Fi3 is a vector subspace of £ = R3. This remark is generalized in the

proposition below.

Proposition 9 Let Fi, ..., F}, be k vector subspaces of a vector space E and
F be defined by:

[ { v €FE /[ Ia,..,ap) € R¥and u' € F,...,u* € Fy, such that }

T = Zf:l au’

Fisa V.S of E, called the sum of Fy, F5, ..., Fy,. We write:
F=F+..+F (1.2)

Proposition 9 does not say that a1, .., a; and the vectors u' € Fy, ..., u* €
F}, are uniquely defined for a given z. In general it is not the case and an

easy counter-example is given by assuming k£ = 2 and F} = F5.
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If the decomposition is unique, we use the word "direct sum" as defined

below.

Definition 10 a) The direct sum of k vector subspaces Fi, ...., Fy, of E (if
it exists), is a V.S such that any x in F' can be written in a unique way as
T = Zle agut where (ay, .., ap) € RFet ul € Fy,...,u* € Fy, . We then note:

b) If E is the direct sum of two V.S Fy and Fy, the two subspaces are said
supplementary.

The direct sum does not always exist because the decomposition of vectors
is not always unique. Some subspaces F; may have common vectors different

from 0. This intuition is formalized in the following proposition.
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Proposition 11 The direct sum of vector subspaces F;,i = 1,....k is prop-
erly defined when for any pair (i, j), F; (| F; = {0}.

Example : Completing a financial market with option contracts

Let £ =R" and x € E defined by:
Vi=1,..,n, x; =1

Let 1 denote the vector in R” with all coordinates equal to 1 and 3* € E
defined by:

y" = (y¥,i=1,..,n) where y¥ = max(z; —k ; 0),k=1,..,n—1

or equivalently:
y* = max(z — k1 ; 0)

F}, is the V.S containing all the vectors proportional to y;,. We then have’:
n—1
E=F
k=0

where, by convention Fy = {fz, 3 € R}
This relation says that any vector z in F can be uniquely decomposed as

follows: )

z = Z ar max(x — k1 ; 0) (1.3)

k=0

The financial interpretation of this example is the following. x denotes
the payoffs of a financial security (a stock or an index for example) which
pays 1,2, ...or n depending on the state of nature that occurs at the final

date’ (there is only one future date T'). The vectors y* are payoffs of call

5The proof is left as an exercise.
60ur reasoning is valid as soon as payoffs x; are different in different states. Choosing
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options on x with a strike price k. A call option gives the right (and not
the obligation) to its holder to buy asset x at a price k at date T

Of course, the holder of the option buys the asset x if x > k and the final
net cash-flow is x — k. But if x < k the holder of the option contract does not
exercise the contract and no cash-flow is exchanged at date T. The payoff is
then equal to 0.

Remark that for £ = 0, Fj is the V.S of vectors proportional to x. In fact
there are only n — 1 option contracts with exercise prices k = 1,...,n—1. The
relationship 1.3 shows that any financial security can be written as a portfolio
composed of x and the n — 1 option contracts. A financial market satisfying
this property is said complete. More details on this financial example can be

found in our companion book Probability for Finance’.

1.1.3 Basis and dimension of a vector space

In the previous example, we have shown that it is possible to construct any
vector of R™ by combining the reference vectors x and v*, k = 1,..,n — 1.
It is time to properly define what means "combining" and to specify the

conditions under which a subset of vectors generates a given vector space.

Spanning sets of vectors

Definition 12 Let u',u?,..,u* be vectors in E and o, ...., oy be real num-
bers; a linear combination of the v’ j = 1,..., k with coefficients «; is the

vector v defined by:

k
_21 o
v = OKJU
j=1

payoffs equal to 1,2, ...,n is not crucial but simplifies the example.

"The idea of completing a market by traded options was initially developed by Steve
Ross in a paper entitled "Options and Efficiency", published in the Quarterly Journal of
Economics in 1976.
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Linear combinations are really fundamental tools in financial models be-
cause, as we saw in the previous example, v is the payoff of a portfolio when
the payoffs of individual securities are the vectors v/ and the «; denote the

quantities of assets.

2

Proposition 13 Let u',u?,..,u* be vectors in E, and F be the set of linear

combinations of vectors v’,j = 1, ...k, that is:

k
F:{.IEE/HCVERk, :U:Zajuj}

j=1
then F' is a vector subspace of E.

In financial terms, F' is the subspace of portfolios that can be built with
primary securities u', ..., u*. This result means that, using proposition 6, a,

linear combination of two portfolios is a portfolio.

Definition 14 Let u',u?,..,u* be vectors in E; they are linearly depen-

dent if there exist coefficients o = (ayq, ..., o) with o # 0 such that:

:
Zozjuj =0 (1.4)
j=1

k

The set u',u?,..,u* is called a linearly dependent family.

This definition says that any vector «’ in the family with a weight a; # 0,
can be written as a linear combination of the other £ — 1 vectors.

Moreover, if a family of k& vectors is linearly dependent, one can add any
number of new vectors to the family, it stays linearly dependent. In fact, it
is sufficient to give null weights to the new vectors to find the same kind of

linear combination.

Remark 15 If a vector in E represents the payoffs of a financial security

in the different states of nature, a linear combination is then a vector of
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portfolio payoffs. If a family of vectors is linearly dependent it means that
you can build a portfolio generating a 0 payoff in each state. In financial
terms, one of the assets is a hedge for a portfolio of the other assets. The
reader can easily imagine that such a situation has some consequences on the
prices of these assets, the intuitive idea being: "a portfolio that pays nothing
(in all states of nature) should cost nothing". We come back to this approach

of arbitrage pricing at the end of the chapter.

Linearly independent vectors and basis of a vector space

Definition 16 Let u',u?,..,u* be a set of vectors in E; they are linearly
independent if they are not linearly dependent. The following implication
1s then true.

k
Y apl =0=a=0 (1.5)

J=1

In particular, two vectors u' and u? are linearly independent if there does

not exist a real number f satisfying u?> = Su!. The two vectors cannot be

colinear if they are linearly independent.

STUDY AT

LINKOPING UNIVERSITY, SWEDEN
RANKED AMONG TOP 5o UNIVERSITIES UNDER 50
Interested in Engineering and its various branches? Kick-start

your career with a master's degree from Linképing University,
Sweden.

#:F Linkdping University

Download free eBooks at bookboon.com &\5«\

17
Click on the ad to read more


http://bookboon.com/
http://bookboon.com/count/advert/b99c8a54-5f43-4e58-ad0b-a34800bc4dbf

Example 17 Let £ = R3 and u', u?,u? be three vectors defined by:

1 2 a
ut=11 [;u*=]|a ;=] 4
a 3 —1

What are the conditions on the number a under which these three vectors

are linearly independent?

We need to solve the following equations:

a1 + 209 +acs = 0
a) +aag +4a3 = 0

acy +3as —az = 0

and find if there are non zero solutions for o/ = (aq; ag; ag)

The first equation leads to
o) = —209 — aos (1.6)

We replace ay by its expression in the two other equations. It writes:

(a—2)ag+(4d—a)ag = 0 (1.7)
(3—2a)as — (1+a*)az = 0
We can now write as as a function of ag to obtain:
—4

(a—2)

In equation (1.8) a must be different from 2. If a = 2, it is obvious
that as = 0 in the first equation of system (1.7). It implies as = 0 in the
second equation and finally c; = 0, showing that the three vectors are linearly

ndependent.
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Assume now that a # 2; using equation (1.8) and replacing ay by its value

in the second equation of system (1.7) gives:

(a —4)as

(3 — 2Q)W

—(1+a*)az =0

For this equation to be satisfied with as # 0, we need:

a—4
(a—2

—~
~—

(3 — 2a) —(14+a*) =0

~—

or, equivalently:

(3—2a)(a—4)—(a—2)(1+a*) = 0
—a*+10a—10 = 0

This equation has, at least, one solution®; the three vectors are then not

linearly independent.

Remark 18 For linearly independent families, we have a property similar
(or more precisely, symmetric) to the one obtained for linearly dependent
families. If k vectors are linearly independent, any subset of these k vectors

s also a linearly independent family.

Definition 19 A family (u,u?,..,u*) of vectors in E is a spanning family

if any x € E can be written as a linear combination of (ut,u?, .., u*).

k
Ve e E, Ja e R tel que x:Zajuj

Jj=1

8In chapter 2 of part I of the book (devoted to limits and continuity), we saw how
this result can be obtained. Intuitively, we observe that if a is positive and large, the left
hand side (LHS) of the equation is negative due to the term —a3. On the opposite, if a is
negative and large in absolute value, this same LHS is positive. Therefore, there is at least
an a for which this LHS is equal to 0 because this third-degree polynomial is a continuous
function of a.
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In example of subsection 1.1.2 dealing with option contracts, we showed
that  and call options on = denoted y*, k = 1, ...,n— 1 constitute a spanning
family of R”. When a family U of vectors is a spanning family of a vector
space E, it is clear that any family {/*containing U is also a spanning family
of E. However, if U* D U and U* # U then U* is a linearly dependent family.

The natural question appearing now is: what is the "smallest" spanning

family of a given vector space?

Definition 20 A family U of vectors in E is a basis of E if U is a spanning
and linearly independent family of E.

When U is linearly dependent and spans F, it is always possible to find,
for a given vector x, several linear combinations in I/ that are equal to z. In

fact, assume that:
x = Z o’ (1.9)
i=1

with U ={u',...,u"} . If U is a linearly dependent family, we can write u! =

S, Byu'. Replacing u' by its value in equation 1.9 leads to:

n

T = Z(Oéi + a1 8;)u’

=2

It is a second linear combination of vectors of & which is equal to z.

But if U is linearly independent, the decomposition of z is unique. This

leads to the following proposition

Proposition 21 A family U = {u',...,u"} is a basis of a vector space E if
and only if any vector x € E can be decomposed in a unique way as a linear

combination of vectors of U.
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Proof. If U is a basis, any vector x can be written as a linear combination

of vectors of U. Assume that there exist two decompositions as follows:
xr = Z o’
i=1
i=1

Substracting the second equation from the first one gives:

n

O=2= Z(ai — B

=1

Equation 1.5 then implies «; = =, for all 7.

To prove the sufficient condition, proceed as follows. If any x € E can
be written as a linear combination of vectors of U, it means that I/ spans
E. But we showed that if I/ is linearly dependent, there exist several linear
combinations to obtain x. Consequently, U/ is linearly independent if the
combination is unique. Therefore, U is linearly independent and spans F, it

is then a basis. =

For any vector x and any basis U, x is characterized by coefficients o/ =
(1 ..; @) satisfying @ = Y ayu’. These coefficients do depend on the
considered basis . The most simple basis in £ = R" is called the canonical

basis, denoted el, ..., e", where the vectors e’ are defined by :
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e' has all its components equal to 0 except the i-th which is equal to 1.

Therefore, for any n-tuple 2’ = (x1, ..., z,,), we obtain the decomposition:

n
T = g x;e’
i=1

When F is interpreted as the set of all possible portfolio payoffs, the
vectors el,...,e" are financial securities called Arrow-Debreu securities,
or pure contingent securities. They pay one unit in a given state of nature

and nothing in all the other states.

Definition 22 A wvector space E is finite-dimensional if there exists a span-
ning family composed of a finite number of vectors. In this case, the dimen-

sion of E is the number of vectors’ in a basis of E.

This definition characterizes properly the dimension of a vector space only
if all the bases of a given space have the same number of vectors. The proof
of this statement is left to the reader as an exercise (hint: assume it is not
true and exhibit a contradiction). From this remark, we can also deduce the

following proposition.

Proposition 23 Let F denote a V.S of a finite dimensional E with F # E.
Then dim(F) < dim(FE).

Definition 22 shows that the dimension of a vector space cannot be iden-
tified by the number of vectors in a spanning family but only by the number
of elements in a basis (linearly independent spanning family). Therefore,
in a family of vectors included in a finite-dimensional space E, there exists
a maximum number of linearly independent vectors which is equal to the

dimension of the space.

9By convention, the vector space containing only the null vector is O-dimensional.
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Proposition 24 Let U = (u',...,u™) be a basis of E and x denote a vector

in E; the family U, = (u',...,u™, ) is linearly dependent.

Proof. x can be written Y | z;u’ since U is a basis. Therefore, we can
find (aq, ..., apn, apy1) with at least one of these cefficients different from 0
such that: .

Z aut + 1T =0

i=1
It is enough that «; = x; and «,,1 = —1. Definition 14 implies that U, is
linearly dependent. m

Let U be a set of financial securities and = a new financial contract intro-

duced on the market. The above proposition shows that the payoffs of the
new asset o can be replicated by a portfolio of securities !* of ¢/. In this sit-
uation, x is called a redundant asset. Later on, we analyze the consequences

of this remark on the evaluation of financial securities.

10Replication means that the future payoffs of = are identical to the future payoffs of
the "replicating" portfolio.
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Definition 25 Let U be a family of vectors in E; the rank of U, denoted

rk(U), is the maximum number of vectors in U that are linearly independent.

In proposition 13 we showed that the set of linear combinations of a subset
of vectors of F is a V.S of /. Moreover, the rank of &/ when we add to U a
linear combination of vectors of U does not change. Consequently, we obtain

the following proposition.

Proposition 26 1)Let U be a family of vectors in E; the set of linear com-
binations of vectors in U is a V.S of dimension p = rk(U).
2) Let v denote a vector which is not a linear combination of vectors of

U; we then have:

rk(Z/IU {v}) =rkUU) + 1

To illustrate the second part of the proposition, consider a vector x € E
defined by :

Denote y the vector defined by y = max(x — £1;0) with £ € N, and 1 the
vector in E with all coordinates equal to 1. As far as n > k > 0, y and
x are linearly independent, that is not colinear!!. Therefore rk({z,y}) =
rk({z}) + 1 = 2. One more time, if x is interpreted as the possible future
prices of a stock, y is the vector of future payoffs of a call option on z with
exercise price k. We observe that portfolios (linear combinations) based on x
and y span a two-dimensional space when asset x only spans a 1-dimensional
space. It explains why (at least in theory) options are able to improve the
allocation of risk and resources in the economy. This property had been

already mentioned in example of subsection 1.1.2.

"'When two vectors are linearly dependent, they are said "colinear".
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1.2 Linear mappings

In finance models, linear mappings are fundamental because of the large
number of applications in which they are involved. It is especially the case
in the theory of valuation based on the no-arbitrage assumption. In fact,
a fundamental result of this approach is that when the market is free from
arbitrage opportunities, the mapping linking future cash-flows to current

prices is linear.

1.2.1 Definitions and notations

Definition 27 Let FEy and Ey be two vector spaces; a mapping f from E; to
Es is linear if:

1)V(u,v) € By x By, f(u+v) = f(u) + f(v)

2)VaeR,Vu e E, f(au)=a.f(u)

o

As before, it is worth to notice that, in f(u + v), the "+" sign refers the
addition of vectors in the space F; but the same sign "+" in f(u) + f(v)
refers to the addition in 5. Remember that the two additions may be quite
different, depending on the characterizations of £; and Es. The same remark
should be done for the multiplication by a real number, even if the difference
is less striking.

Linearity of a mapping f means that the image of a linear combination
of vectors in FEj is the linear combination of images in F, with the same
coefficients. The following proposition formalizes this remark. It is sometimes

used as the definition of a linear mapping.

Proposition 28 A mapping f : E1 — FEs is linear if and only if for any fam-
ily (u', ..., uP) of vectors in Ey and any p-tuple (aq, ...cp,) € RP, the following
equality 1s satisfied:

/ (Z Oéiui) = Zaif(ui)
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Remark 29 a) The definition of linearity implies immediately f(0g,) = O,
if Op, and Og, denote the null vectors of the two spaces. Moreover, for any
uwe By, f(-u) = —f(u).

b) If U = {u,...,uP} denotes a linearly dependent family in E; then
FU) ={f(ub),..., f(uP)} is a linearly dependent family in E,. On the oppo-
site, if U = {ul,...,uP} is a linearly independent family in Ey, f(U) is not
always a linearly independent family in Ey (the proof is left to the reader; it
is sufficient to consider the mapping u — f(u) = u1l where uy is the first

coordinate of u and 1 is, as usual, the vector with all coordinates equal to 1).

1.2.2 Kernel and image of a linear mapping

Definition 30 1)Let f denote a linear mapping from E; to Es; the kernel
of f denoted Ker(f) is the set of vectors u € Ey satisfying f(u) = 0.

2) The image of f, denoted Im(f) is the subset of Ey defined by :

Im(f)={y € Ey /3 x € Ey such thaty = f(z)}
Ker(f) is then a subset of E; equal to the reciprocal image of the null
vector in F, (sometimes written f~!(0g,)). On the contrary Im(f) is a

subset of Es, sometimes written f(F;) because it contains all vectors in Fy
that can be written f(u) with u € Ej.

Proposition 31 Ker(f) and Im(f) are V.S of Ey and Ey respectively.

Proof. Using proposition 6, it is enough to show, for the kernel Ker(f) :

Y(u,v) € Ker(f) x Ker(f),¥(a, ) € R* a.u+ B.v € Ker(f)
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The linearity of f implies that!?:
flau+Bo)=a.f(u)+p.f(v) =a.0+50=0
For the image, we have to prove that:
W(z,) € Im(f) x In(f), ¥(a, ) € RZ, .z + By € Im(f)

Let v and v be two vectors in F; such that f(u) = z and f(v) = y. We can

write:

ax+ By=a.flu)+5.f(v) = flau+ B.v)

Therefore a.z + 3.y is the image of av.u+ S.v through f, implying a.x + .y €
Im(f). m

This proposition shows in particular that the image of E by f is a V.S
of F5. With the same technique of proof as before, we can demonstrate the

following proposition.

12We come back here to standard notations where 0 denotes the null vector in either
space, assuming that the reader is now able to identify the reference space if necessary.
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Proposition 32 Let F} be a V.S of Ey; f(Fy) is a V.S of Es.

Remmember that {0} is a V.S of Ey and the reciprocal image of {0} by
f is the V.S Ker(f). This remark can be generalized as follows.

Proposition 33 If I, is a V.S of Ey, f~Y(F,) is a V.S of Ej.

An important property is to characterize the relationship between the
kernel dimension and the properties of f. In particular, the question is to

know if a vector u # 0 can satisfy f(u) =0
Proposition 34 If f is injective then Ker(f) = {0}

Proof. f injective means that y # ©+ = f(y) # f(z). As f is a linear

mapping, this implication writes:

y—x£0= fly—2)#0

and therefore Ker(f) = {0} . The reciprocal goes as follows. If Ker(f) =
{0} and if there exist z and y, x # y satisfying f(x) = f(y), an obvious

contradiction arises because f(x — y) = 0, meaning that z —y € Ker(f). =
Proposition 35 If f is surjective then Im(f) = Es

Proof. This result is obvious because f surjective means that any vector in

E5 has a reciprocal image in £; =

Definition 36 A bijective linear mapping from Ey to Es is called an iso-

morphism.

This notion of isomorphism is fundamental when it comes to associate a
space of linear mappings to a space of matrices, or a vector space to its dual

space, as we will see in the next section.
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Proposition 37 Two vector spaces Ey and E5 are isomorphic'? if and only

if their dimensions are equal.

Proof. Denote n and p the respective dimensions of F; and Fjy; let U and
V be bases of these two spaces and f be a bijective linear mapping from E}
to Fjs.

We first show that " f injective" is equivalent to " f(u'), ..., f(u™) are lin-
early independent".

If f is injective, Ker(f) = {0}. Therefore, any linear combination

S wiut satisfies:

Zmiui =0< x; =0 for any ¢ (1.10)

=1

In this case,
f (Z xu> =3 wif(ul) = 0
i=1 i=1

which shows that the vectors f(u') are linearly independent. The reciprocal
goes as follows: if the f(u'),i = 1,...,n are linearly independent, we can

write:

lef(uz) =0< z; =0 for any @ (1.11)
i=1

but the linearity of f implies that > "1 | z;u’ € Ker(f). Relation (1.11) then
implies Ker(f) =0 and f is injective. It follows directly that n < p.

As f is also surjective, Im(f) = E5 and the rank of the family of vectors
flub), ..., f(u™) is p, meaning that n > p.

We show now that if F; and F, have equal dimensions, they are iso-
morphic. The basis V with p vectors defines a linear mapping f from
E; to Fy such that V is the image of a family W of F;. We then have
rk(W) = n = dim(F;) proving that f is injective.

I3Misomorphic" means that there exists an isomorphism between E; and Fs.
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But we also know that dim(F;) = dim(FEs>); therefore f is also surjective.

As a result, f is bijective and F; and F, are isomorphic. ®

1.2.3 The space of linear mappings

The set of linear mappings defined on a vector space F; and taking values in
a vector space Fy is denoted by L(E4, Es), or simply £ when no confusion is
possible.

In example 4, we showed that the set of mappings defined on a vector
space E and taking values in R is a vector space. The property is still valid
if R is replaced by another vector space. Therefore, L(E}, Es) is a subset of

A(FE1, Ey). As the elements in £ are linear mappings, we have the following

property.
Proposition 38 L is a V.S of A(E4, Es)

Proof. Let (f,g) € £? and (a,3) € R; for any couple of vectors (z,y) of

Ey x E4, we have:

(af +8g)(x+y) = af(r+y)+pg(r+y)
= af(z) +af(y) + Bg(r) + Bg(y)
= (af +Bg) (z) + (af + Bg) (v)

For any x € E; and v € R, we also have:

(.f+B.9)(vz) = af(yz)+ Bg(yr)
= vaf(z) +vB9(z)
= v (af +Bg) (z)

One of the most common situations appears if E; is a general vector
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space'? and E, is R. In this situation, the elements of L£(F;,R) are called
linear functionals (or one-forms); we will see later on that the mapping
linking a function to its integral is a linear functional. In the same way,
the expectation operator is a linear functional defined on a space on random
variables. In finance models, the no-arbitrage assumption implies that the
valuation operator mapping future cash-flows and today prices is a linear
functional'®.

Definition 39 Let E be a vector space; the set L(E,R) of linear functionals
defined on E is called the dual space of E.

When F is a finite-dimensional space of dimension n, its dual space sat-

isfies the following property.
Proposition 40 If dim(F) =n < +oo; dim (£(F,R)) = dim(FE)

Proof. Let (u',..,u™) be a basis of E and x € F written as:
T = z:x,uZ (1.12)
i=1
Consider f!,..., f*, a set of linear functionals defined by:

Vi=1,..,n;Vo € E, fi(z) = 2;

The family F = (f!,..., f*) spans L(E,R). In fact, for any given linear

functional g, we have:

g(x) = ing(ui) = Zg(ui)f"(x) = (Z g(ui)fi> () (1.13)

14In particular, F; may be an infinite-dimensional space of random variables in proba-
bility frameworks.

15 A financial security is defined by the future cash-flows it generates. In general, financial
securities can be represented as elements of a general vector space.
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It shows that g can be written as a linear combination of the f°.
We now show that F is a linearly independent family. The equality

>y a;f' = 0 means:
Vo€ B aifi(x) =0
i=1
but, according to the definition of f, this equality is equivalent to:

n
E a;r; = 0
=1

For this equality to be satisfied by any =z, it is necessary that all the «;

are equal to zero'®, and this ends the proof. m

16The linear mapping f? is called the projection on u'.
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1.3 Finite-dimensional spaces and matrices

In this section, we assume that the two spaces E; and FE, we refer to are
finite-dimensional. The notations are unchanged. E; (F5) denotes a vector
space of dimension n (p). L(FE1, E3) is the space of linear mappings from E;
to EQ.

1.3.1 Representation of a linear mapping by a matrix

Proposition 41 Let U = (u',..,u™) be a basis of By and V = (v v?, ..., 0P)
be a basis of Ey; any mapping f € L(Ey, Ey) is completely defined by the

family of vectors f(u'),..., f(u™) expressed in the basis V.

Proof. Let z € E; such that x = > | zu’; f(z) can be written:

flx)=Ff (Z SEzUZ> = chzf(uz)

Therefore, if the images f(u') of the vectors of the family I are known,
it is possible to characterize the image of any vector z. Each vector f(u’)
belongs to FEjy, it is then a p-dimensional vector. The linear mapping f is
then completely specified by n x p numbers equal to the coordinates of the
n vectors f(u'),i=1,...,n. m

If we denote f(u’) as follows:

we can introduce the following definition.

Definition 42 The matriz of the linear mapping f, denoted My (U, V)

is a p X n matriz whose columns are the vectors f(u'),i=1,...,n.
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According to the above notation for f(u'), we have:

ai; a2 .... QAip
Gp1 «o Qpn

The notation M (U, V) is cumbersome but it is used here to emphazise
that the matrix representing f depends on the two bases on E; and F,. Of
course, in the next sections, we will simply write M when no confusion can
be made.

The above remarks show that being given ¢/ and V), the matrix M; is
linked to f. But more generally any p x n matrix defines a linear mapping
from E; (of dimension n) to Fy (of dimension p). The most usual case is the

one where U/ and V are the canonical'” bases of F; and Fj.

1.3.2 Compounding linear mappings

Consider three vector spaces Fi, F», E3 with dimensions n, p, m and bases
U,V, W;let f denote a linear mapping from F; to F, and g a linear mapping

from Fs to E3. In general we describe this sequence as follows:

J AN S Iy (1.15)

Compounding the mappings f and g aims at defining a new mapping
from E; to FEjs.

I"TRemember that the canonical basis is the basis for which vectors have all their coor-
dinates equal to 0, except one which is equal to 1. For example in R3, the canonical basis

() (3 (1)
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Definition 43 The compound mapping of f and g is the mapping denoted
go f from Ey to E3 defined by:

Vo € Ey; go f(x) = g[f(v)]

x writes Y i z;u’; but f and g are linear, so we have:

go f(x)=glf(x)] =g [Z wif(ui)] = xigo f(u')
i=1 i=1
This equality shows that g o f is a linear mapping.

The compounding of linear mappings is linked to the product of matrices.
Denote My and M, the matrices associated to the mappings f and g, defined
as before. For any x € Ey, f(x) = Myz. The vector f(x) belongs to Es; as
such it has p coordinates. Therefore, the image of f(x) by ¢ is obtained by
a premultiplication of f(z) by M,. This leads to:

go f(z) = My (Mpx) = MyMyx = Moy ()

To calculate M. ¢, we apply successively f and g. Denote for example:

aix; Q12 ... Aip
Mf _ 21

ap1 Qpn,

bir  bio blp

b

brnp brnp
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The generic element of My.s is ¢;;, defined as:

p
Cik = g brjaji
Jj=1

We then observe that M,,; = M,M;y, the product of M, and M, defined
in part I of the book (chapter 4).

The following proposition is a special case of this relationship.

Proposition 44 A matriz A associated to a linear mapping f is invertible

if and only if f is a bijection. The matriz representing = is the inverse of
A denoted A7

In fact, if B is associated to f~!, the relationship AB = I, means that
B = A~!. We obtain the following corollary.

Corollary 45 1) Let A denote a (n,n) invertible matriz. For any u € R™,
the system of equations Ax = u has a solution x € R" defined by v = A~ u.

2) If a matriz A is invertible, its columns are linearly independent vectors

of R™.

We mention these two properties as corollaries but they are equivalent to
proposition 44. When the columns of A are future payoffs of financial assets
in the n states of nature, the columns of A~! are the quantities of securities

to be held to duplicate the Arrow-Debreu securities because AA™! = Ip.

Example 46 Discounting

In chapter 4 of part I, we showed that a bank can create contracts paying
a single future cash-flow by combining bonds of different maturities. We
calculated the prices of the contracts using the prices of the bonds.

Suppose that the cash-flows of the three bonds are stored in a matriz M

as follows:
104 6 4
M = 0 106 4
0 0 104
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The price vector m is:
99,5
™= | 100,4
99,6

Denote now f the linear mapping defined from R3 to R such that f(M7) =
m;, were M7 is the j-th column of M (the cash-flows generated by the j-th
bond) and 7; is the price of bond j'®. The mapping f is represented by a

vector denoted A :
ai

A: a2

as

So we have:

100X a1+ 0 xaz+0xaz = 99,5
6xa+106xas+0xaz = 100,4
Axay+4xay+104x a3 = 99,6

This system can be written as:
MA=m

But M is triangular with non-zero diagonal terms, it is then invertible.

Consequently:
A=M)"'x

The elements in A are in fact the prices of zero-coupon bonds with respec-

tive maturities 1, 2 and 3 years.

18We assume here that this mapping is linear. In fact it is true when the market is
arbitrage-free.

Download free eBooks at bookboon.com


http://bookboon.com/

1.3.3 The vector space of matrices

Being given two bases U and V on the vector spaces F; and Fs (of dimensions
n and p), the set M,,, of matrices with p rows and n columns must have
the same structure as the set L£(FE4, Ey) of linear mappings from E; to F,
that is a structure of vector space. This is the only way to make coherent
the structure of vector space of L(F1, Ey) with the operators (addition and
product by a real number) on M,,. This relationship is formalized in the

following proposition.

Proposition 47 M,,, and L(E1, E3) are isomorphic and the dimension of

these two spaces is p X n.

Proof. If we prove these two spaces are isomorphic, we will be able to
conclude that the dimensions are equal because of proposition 37.

The mapping which links f € L(E, Ey) to My is bijective because My is
defined by the images of the basis vectors of FEj;.

Let us denote A;; the matrix with all null elements, except the one on
i-th row and the j-th column which is equal to 1. Any matrix A = (a;;,i =

1,...,p;j =1,..,n) can be decomposed in a unique manner as:

p n
A=) > aidy
i=1 j=1

Therefore the family (A;;,i = 1,...,p;j = 1,..,n) is a basis of M,,, and has

p X n elements. This ends the proof. m

Example 48 Without entering into technical details, consider a set of mu-
tual funds, each fund being a portfolio of individual securities. In a model
with one period and n states of nature, the future payoffs of the individual
securities (let K be the number of traded securities) can be summarized in
a matriz D with n rows and K columns. The mapping "portfolio”, denoted

f, from RE to R™ associates a vector 0 to a vector f(0) = DO where the
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vector 6 contains the quantities of securities in the portfolio and the vector
D0 represents the future payoffs of the portfolio 6. Let now g be the mapping
from R™ to R which links to any vector x a number g(x) = > p;z; where
P = (pi,i = 1,...,n) is the vector of probabilities of occurrence of states
1=1,...,n.

If x represents the payoffs of a portfolio in the different states of nature,
g(x) is the expected payoff of the portfolio. Consequently, the product P DO
is the expected payoff of the mutual fund 6. It can also be written gof(0).

1.3.4 The special case of square matrices

A square matrix has, by definition, the same number of rows and columns.
In particular, the product of two (n,n) square matrices is still a (n, n) square
matrix. In other words, the result of the product stays in the same space
M,,. Consider three vector spaces E1, Fs and FEj, all of dimension n. The
product M,My is a (n,n) matrix if f is a mapping from E; to E, and g a
mapping from Fs to Fs.

The most important case addressed in what follows is £; = Fy = F3 = F.
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Definition 49 A linear mapping from E to E is called an endomorphism.

We just described the links between matrices and linear mappings. Of
course, an endomorphism is represented by a matrix in M,,. But we also
know by chapter 2 of part I that if a mapping f is bijective, it has an inverse
denoted f~! and satisfying f o f~' = f~'o f = ip where ip is the identity
mapping of E defined by ig(x) = z for any = € F.

1 is obviously linear and it is easy to see that the matrix [,, represents

1 where [, is defined by:

The reader can check that I,,# = x for any x € R". The matrix [, is called
the identity matrix. Finally, we also know that the matrix associated to
the compound of two mappings is the product of the matrices of the two
mappings involved in the compounding. From all these remarks, we deduce

that if A and B are matrices representing f and f~!, we have:
AB =1,

Proposition 50 If f is a bijective endomorphism of E represented by a

matriz My, f~1 is represented by the inverse matriz M ; L

Determinants

Knowing if the determinant of a square matrix is zero allows to know if this
matrix is invertible. In a more geometric approach, a zero determinant means

that the columns (or rows) of a given matrix are linearly dependent.
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Determinant of a (2,2) matrix Denote x and y two vectors in R2. They
are colinear if there exists a € R satisfying y = ax. This equality is equivalent

to:

Y1 = ar

Y2 = 0Oy

From these two equations we deduce x1ys — x2y; = 0; on the contrary, if
T1Ys — x2y1 # 0, the vectors x and y are linearly independent. If x and y
are the two columns of a square matrix A, A is invertible if z1yo — w91y # 0.

This remark justifies the definition of the determinant of a (2, 2) matrix.

Definition 51 Let A be a (2,2) matriz with generic term a;;,1,j = 1,2. The
determinant of A (denoted det(A)) the number:

det(A) = 11029 — Q12021

Determinants of larger matrices are defined by induction. The determi-

nant of a (n, n) matrix is a function of determinants of (n—1,n— 1) matrices.

The general case

Definition 52 1) Let A be a (n,n) matriz. Let D;; be the determinant of
the matrixz deduced from A by deleting the i-th row and the j-th column of A.
The (i, j)-th cofactor of A is the number C;; = (—=1)" D;;.

2) The i-th principal minor of A is the (i,1) matriz obtained by deleting

the last n — i rows and columns of A.

Part (1) helps in calculating the determinant of A as shown in the follow-
ing definition. Part (2) will prove useful to characterize positive (negative)

definite matrices later on in this chapter
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Definition 53 Let A be a (n,n) matriz. The determinant of A is defined

as follows:
det(A) = ZaijCl-j
j=1

for any i between 1 and n.

The determinant of a matrix A is also usually denoted as follows (the

matrix is placed between two vertical bars):

aijpr ai2 ... Qin

a21 Q2n,
det(A) =

anl e oo Qpp

Example 54 Let A be defined by:

s

I
N = W
o R
NI

Definition 52 for i = 1 gives the following development.

4 2 1 2 1 4
el =316 4|72y 2 6
= 3x(4x4-6x2)—1x(1x4—-2x2)+2(1x6—2x4)

= 8
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Suppose now i = 2. We obtain:

1 2 3 2 31
det(A) = -1 6 4 +4 - -2 5 6
= 1x(4—12)+4x(12—4)—2x (18— 2)

= 8

Of course, the result is the same. It is not a proof, but the proof itself is

cumbersome and uninteresting on a practical point of view, so we omit it.

One of the main results concerning determinants is related to products

and transposition of matrices.
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Proposition 55 1) Let A and B two (n,n) matrices. We have:

det(AB) = det(A)det(B)
det(A") = det(A)

2) If a matriz B is deduced from a (n,n) matriz A by swapping two rows

or two columns, the determinants of the two matrices satisfy:
det(B) = —det(A)

3) A square matriz A is invertible if and only if its determinant is different

from zero. If det(A) # 0, the inverse matriz A~' writes:

-1 _ 1 T
Al = det(A)C (1.16)

where C' = (Cij,4,7 = 1,..,n) is the cofactor matriz. Moreover, det(A™') =
1

det(A) "

Proposition 55 gives a way to calculate determinants but this method is
not the most numerically efficient.

Equality 1.16 is illustrated in the following example 56.

Example 56 Let A denote the (3,3) matrix:

S

I
O W
W o W
O = Ot

The determinant of A is calculated as follows:

6 1
2

4 1

det(A) =3
et(A) 5 o
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Applying relation 1.16 leads to:

. 9 11 -—28
Al = = -6 —4 17
0 =5 10

If we apply the same technique to AT, the cofactor matrixz of AT is the trans-

pose of the cofactor matrix of A. Therefore we obtain:

L[ 9 60
(A7) = Sl 4
—28 17 10

1.3.5 Changing the basis
Matrix of a linear mapping after a basis change

A linear mapping f defined on R", endowed with a basisU = (uy, ..., u,) , and
taking values in R™, endowed with a basis V = (vy, ..., v,,), is represented
by a matrix M (U,V). As mentioned before in definition 42, the notation
My (U,V) recalls that M; depends on the two bases. In particular, the
columns of M are the images of vectors of U by f, expressed in the basis V.

It turns out that a modification of one of the two bases changes the matrix
M;. Denote W a second basis of £/ and P the matrix having in columns the
vectors of W, expressed in the initial basis /. This matrix will be called a
change-of-basis matrix from basis U to basis W.

We can show the following proposition.

Proposition 57 Letv be a vector of R™ with coordinates x7 = (x1, 29, ..., T,,)

in basis U and y* = (y1, Y2, ..., yn) in basis W. We then have:

t=Pyandy=P 'z
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My (W,V) is given as follows:

M; (W, V) =P 'M; (U,V)P

Example 58 Let M¢(U,V) and = be defined by:

—_ s =
8]
I

12
MU, V)=10 1
2 3

Assume that U is the canonical basis of R® and define W by:

The image f(x) of vector x (in basis U) is given by:

17
6 | =] 10
27

fz) =

—_ s =

2
1
3

N O =

The matrixz P writes:

s
Il
O ==
D w O
_— O N

The inverse of P is calculated using the cofactors (equation 1.16). We

obtain:
) 3 4 —6

Pt=21 =
- 1 1 2
2 -2 3
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We deduce from this formulation of P~:

) 3 4 —6 1 21 . -9 -8 13
P'MU,V) = -2 0 1 4 - 3 5 5
2 -2 3 2 31 8§ 11 -3
) -9 -8 13 10 2 . —-17 2 =5
P'M;(U, V)P = -1 3 5 5 1 30 = 8 25 11
8 11 -3 0 21 19 27 13
Therefore, in the new basis YW, x writes :

3 4 —6 4 30

r==-| -1 1 2 6 | =z 4

2 -2 3 1 -1

The following section studies the case where My (W, V) is diagonal when

W and V have the same dimension.

Trace of a square matrix

Definition 59 The trace of a (n,n) square matriz A is the sum of its di-

agonal terms and is denoted Tr(A).

TT(A) = Zn: Qi
=1

The elementary properties of the trace of a matrix are summarized in the

following proposition.
Proposition 60 Let A and B be two (n,n) matrices and ¢ € R:

Tr(cA+B) =
Tr(AB) =

cI'r(A)+Tr(B)
Tr(BA)
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Denote A a matrix representing an endomorphism f of R™ when the bases
are U and V. The columns of A are the basis vectors of R" transformed by f
. If R™ is endowed with a new basis VW the matrix representing f is modified

(denoted B) but the trace does not change.
Proposition 61 7r(A) =Tr(B).

The reader can check that the proposition is true in example 58. The

matrices with respect to the two bases were:

121 T2 s
M;UVy=|0 1 4 et My(W,V)=2| 8 25 11
2 3 1 19 27 13

The trace of the two matrices is equal to 3.

/

Leadiny
% Maastricht University o Leanin:

Join the best at

- 33" place Financial Times worldwide ranking: MSc

the MaastriCht U niverSity International Business

+ 1% place: MSc International Business

School of Business and 15t place: MSc Financial Economics

2" place: MSc Management of Learning

o - 2" place: MSc Economics
I 2P
Econom 1CS. - 2" place: MSc Econometrics and Operations Research
- 2" place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is
the best specialist
university in the
Netherlands
(Elsevier)

Master’s Open Day: 22 February 2014

www.mastersopenday.nl

Download free eBooks at bookboon.com &\5«\

48

Click on the ad to read more



http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Diagonalization of square matrices

A question coming naturally to mind when dealing with changes of bases is
the following: can we transform the matrix of an endomorphism in a more
simple one, more precisely in a diagonal matrix, by a change of basis?
Methods of data analysis like Principal Component Analysis of Factor
Analysis are based on such transformations. Even if these methods are not
addressed in the present book, the reader should know that they are used in

multifactor models, especially the Arbitrage Pricing Theory!”.

Eigenvalues and eigenvectors Eigenvalues and eigenvectors are the math-
ematical tools allowing to formalize a change of basis in such a way that the
resulting matrix becomes diagonal.

Let f be an endomorphism of R™ and let M denote the matrix of f in
basis U.

Definition 62 An eigenvalue of f (or equivalently of M) is a real number

A such that there exists a non zero vector u € R™ satisfying:

flu) = Mu=Mu

u is then called an eigenvector of f (of M) associated to the eigenvalue

Several linearly independent vectors can satisfy Mu = Au. But if two

linearly independent vectors u and v satisfy Mu = Au and Mv = \v, then

9The seminal paper is Ross, S. (1976),"The Arbitrage Theory of Capital Asset Pricing".
Journal of Economic Theory 13 (3): 341-360.

Two examples of papers using data analysis methods are Roll, R. and Ross, S. (1980).
"An Empirical Investigation of the Arbitrage Pricing Theory". Journal of Finance 35 (5):
1073-1103.

Chamberlain, G. and Rothschild, M. (1983), "Arbitrage, Factor Structure, and Mean
Variance Analysis on Large Asset Markets." Fconometrica 51, 1281-1304.
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the same relationship is true for any linear combination of v and v:
Y(a,b) € R x R, M(au + bv) = A(au + bv)
Of course, this relation is satisfied because f is a linear mapping:

flau+bv) = af(u)+bf(v) = M(au+ bv)
= alu+ bl = A au + bv)

We then obtain the following definition.

Definition 63 The eigenspace of the eigenvalue \ is the vector subspace
F\ defined by:

F\ = {u € R" such that f(u) = Mu = Au}

To determine the eigenvalues of a linear mapping f, we use the charac-

teristic polynomial.

The characteristic polynomial

Definition 64 Denote M — \I,, the following matriz:

mi1 — A mio min
may Mo — A Man
M — )\, =
m3s — )\
MmMnpa MmMp2 Mag — A

The characteristic polynomial of f is the polynomial Q(N\) defined by:
Q(N\) = det(M — \I,)

M — M\, is obtained by substracting A\ times the identity matrix 7,, to M.
Solving Q(A) = 0 provides all the eigenvalues of M.
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Proposition 65 The eigenvalues of f are the solutions of Q(\) = 0.

By definition, A is an eigenvalue of M associated to the eigenvector w if:
Mu = \u
This equality is equivalent to:
(M —X,)u=0

The matrix M — AI, is then not invertible because u # 0. Therefore its
determinant det(M — AI,,) = Q(A) is equal to 0.

Example 66 Let [ be a linear mapping represented by M in the canonical
basis of R3 :

=

I
o O =
= NN O

2
2
1

Calculating the determinant of M — \I,, along the first line leads to:

= (1-N(@-N1-Y-2)
= (1= N2 -3
— A1=N(A-3)

Equation Q(\) = 0 has three solutions that are \y = 3 ;X\ = 0 and
A3 =1.

What are the corresponding eigenvectors u',u® u3? First, we need to
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solve (M — M\ I3)u' =0, that is:

-2 0 2 uj 0
0 -1 2 w =10
0 1 —2/) \u 0

The solution satisfies u} = ul and ui = 2ui. The following vector is an

example of solution:

What is the matriz of f in the basis (u', u? u3)?

The change-of-basis matriz P is the matriz built with u', u?, u? as columns

because the initial basis was the canonical basis:

1 -2 1
P=|2 -1 0
1 1 0
The inverse of P is equal to:
0 1/3 1/3
Prt=1[0 -1/3 2/3
1 -1 1
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As a consequence, we have:

0 1 1
PM = 0 0 0
1 -1 1
300
pPiMp = 000
00 1

Example 66 illustrates how M becomes a diagonal matrix when M is

written in the basis of eigenvectors. Moreover, the elements on the diagonal

are exactly the eigenvalues. We let the reader check the result of proposition
61, that is Tr(M) = Tr(P~'MP) = 4.
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When can we diagonalize a matrix?

Definition 67 A (n,n) matriz M is diagonalizable if it has n eigenvalues

and n linearly independent eigenvectors.

An equivalent definition could be: M is diagonalizable if there exists a
diagonal matrix D (contenant les eigenvalues) and an invertible matrix P
satisfying:

M =P'DP

Of course, the diagonal elements of D are the eigenvalues of M and the
columns of P are the corresponding eigenvectors of M.
It may happen that two eigenvalues are equal, for example if the charac-

teristic polynomial is:

Q) =MA-1)(A-3)

In this situation, M is diagonalizable if the dimension of the eigenspace
F3 (associated to A = 3) is equal to 2.
On the contrary if dim(F3) = 1, M is not diagonalizable. We cannot find

an invertible change-of-basis matrix P.

Symmetric matrices A non negligible part of financial theory deals with
portfolio choice and portfolio management. In this framework, an important
piece of information is the covariance matrix of returns which is a symmetric

matrix. These matrices are special because of the following proposition.

Proposition 68 Any square symmetric matrixz M is diagonalizable and we

have:

P—l — Pl
M = PDP

where P denotes the matriz of eigenvectors.
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The first result says that the inverse of P is its transpose P’. Such a

property characterizes orhogonal®® matrices.

1.4 Norms and inner products

1.4.1 Normed vector spaces

In the section devoted to topology in chapter 1 of Part I, we defined the
concepts of distance (metric) and metric spaces. The Euclidean distance on
R™ was defined by:

(1.17)

If n = 2, d(x,y) is the length of the straight line joining 2’ = (z1,x2)
to ¥ = (y1,y2) . More generally, in a finite-dimensional space, the concept
of "length" of a vector is defined through a norm on the vector space under

consideration.

Definition 69 Let E be a vector space; a morm on E is a mapping, denoted

Il.Il, defined on E and taking values in Rt satisfying:

|lz]] = 0<2=0
V(r,y) € Ez+yll <l + [yl
Ve € E,VeceR" |cx| = |||z
It appears that a norm ||.|| on a vector space induces a metric d on the

same space if the metric is defined by :

d(z,y) = ||z =yl

20Tn the next section, we justify the word "orthogonal".
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The Euclidean metric on R™ defined in relation 1.17 is induced by the

following Euclidean norm on R":

As for metrics, many different norms can be defined on a vector space.

For example the mapping ||z, .. = max;|z;| can be used as a norm.

max
In finance, norms are associated to risk measures. For example if x;
denotes the future value of a portfolio in state i, the two abovementioned
norms are interpreted differently.
Let 1 denote as usual the vector with all coordinates equal to 1 and
T = 15" x; the average payoff. A usual measure of risk is the empirical

T on

variance calculated as:

n

1 1
2 2 2
o) == |lz =L = = (2 —

=1

But in a different approach called Value at Risk*', we could use ||z — T1||
as a measure of risk??; risk is then evaluated as the maximum difference with
respect to the average payoff.

The second important tool to structure a vector space is the concept of
inner product. In finite-dimensional spaces, norms and inner products are

closely related. It is not always the case in infinite-dimensional spaces.

1.4.2 Inner products in vector spaces

Definition 70 An inner product on a vector space E is a mapping, de-

noted < .,. >, defined on E x E and taking values in R, symmetric, bilinear

21For a detailed presentation of Value-at-Risk, see Jorion (2006), Value at Risk: The
New Benchmark for Managing Financial Risk, McGraw-Hill Professional.

22This measure is not exactly what is called Value at Risk in the financial literature but
it is in the same spirit.
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and positive, that is satisfying:
1. <z,y>=<y,x>

2. V¥ (a,b,c,d) € R,V (z,y,2,t) € E*,

< ax+by,cz+dt >=ac < x,z > +ad < x,t > +bc < y,z > +bd < y,t >

3. <xz,x>=0<%< 2 =0 otherwise < z,x > > 0.

Part 1 defines symmetry, part 2 bilinearity and part 3 positivity. The

usual inner product on R" is defined by:

n
<@y >=Y wy
=1

Alternative notations of the inner product of two vectors x and y are
(z,y) or x'y. The latter is consistent with the rules used to multiply matrices
(see part I, chapter 4). The reason is that a column-vector is a matrix with n
rows and 1 column. Consequently, ' is a matrix with 1 row and n columns.
The product x'y is then a matrix with 1 row and 1 column, that is a number.

Definition 70 allows for general inner products. However, we need to
recall what is a positive-definite matrix to generalize inner products beyond

the usual Euclidean ones.

Definition 71 A square matriz A of dimension n is positive (negative)
semzi-definite if:
Ve e R", oAz > ()0

A square matriz A of dimension n is positive (negative) definite if:
Ve e R", x #0=2"Az > (<)0

This definition allows a general characterization of inner products on R™.
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Vector spaces and linear mappings

Proposition 72 Let A be a square symmetric positive definite matrix; the

mapping (x,y) — ' Ay associating any pair of vectors of R™ to the product

2’ Ay is an inner product on R" denoted < .,. >4 . The norm associated to

this inner product, denoted ||.|| 4 is defined by ||z|| , = Va'Ax

Without entering into the details of the proof, remark that the condition

< xz,x >4 > 0for x # 0 is satisfied because A is positive definite. In the same

way, A is symmetric, property ensuring that the inner product is symmetric.

Moreover, if A is the identity matrix, we are back to the definition of the

usual inner product.
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Definition 73 Two vectors of E are orthogonal if their inner product is

equal to 0.

This definition of orthogonality refers to "right angles" when the usual
two-dimensional space is endowed with the standard inner product. But the
definition also shows that orthogonality is a much more general concept and,
mainly, that being orthogonal for a pair of vectors depends on the inner
product the vector space is endowed with. For example, if A is a diagonal
matrix with strictly positive numbers on the diagonal satisfying > a; = 1, A
defines an inner product allowing to calculate the expectation of the product
of two random variables because the diagonal terms of A define a probability
measure. In this example, orthogonality is far from the usual geometric

interpretation?.

Geometric interpretation

To elaborate on geometric aspects, consider the space R” endowed with the
usual norm and inner product. Let x and y denote two vectors in R"; the
norm of the normalized vector z* = ﬁ is equal to 1 by construction. Let y°
be the projection of y on the line A, generated by x. y° is proportional to z,

and more precisely we have the following equality:
Y=<y, x* >z

In other words, the inner product of x and y is equal to the coordinate
of the projection of y on A, (apart from the standardisation factor ||z||), as
illustrated by figure 1.1.

Let a denote the angle between = and y, we can establish the following

Z3For example the expectation of a random variable X can be written as 1’AX =
n
Z a;; X; where X; is the value of X in state ¢ and a;; is the probability of occurrence of
i=1

state 1.
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Figure 1.1: Geometric interpretation of the inner product

relationship between the inner product < z,y > and the cosine of « :
<,y >= cos(a). [|z[| ||yl

We are back to the well-known relationship saying that the cosine is equal

to the ratio of the inner product divided by the product of norms.

1.4.3 Quadratic forms

Definition 74 A quadratic form f, defined on an open subset D C R",
taking values in R, is defined by :

Ve e D, f(x) =2 Az
where A is a symmetric square matriz.

Proposition 75 A quadratic form is convexr (concave) if and only if A
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is positive(negative) semi-definite. If A is positive(negative) definite, f is

strictly convex (concave).

Quadratic forms are naturally present in portfolio management because
the variance of the return of a portfolio x containing n stocks writes 'V
where V is the covariance matrix of returns of the n stocks.

In finance models, V is generally assumed positive definite, meaning that
it is not possible to build a zero-variance portfolio (that is a risk-free portfolio)
by combining n risky assets. It is an assumption but what is sure is that V is
positive semi-definite because a variance of return '’V cannot be negative.

The other domain where quadratic forms arise naturally is non linear
optimization. We will see later on that it is easy to find the maximum

(minimum) of a quadratic form when it is concave (convex).

1.5 Hilbert spaces

1.5.1 Definition

We mentioned several times that mathematical properties satisfied in finite-
dimensional spaces could be false in more general spaces. However, there
exists a category of infinite-dimensional vector spaces for which important
properties remain valid. These spaces are called Hilbert spaces and they are
well fitted to study financial problems, as it is illustrated in Probability for

Finance.

Definition 76 A Hilbert space is a vector space E whose norm is deduced

from an inner product and that is complete as a metric space**.

24Remember that a metric space is complete if any Cauchy sequence converges. There-
fore, speaking about a complete normed vector space is not really correct because com-
pleteness is a notion defined in metric spaces. This expression simply means that the
metric d deduced from the norm on E makes (F,d) a complete metric space. This metric
is defined by d(z,y) = ||z — y|| .
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Of course, finite-dimensional spaces like R" are Hilbert spaces when they
are endowed with an inner product like the one defined in proposition 72.

The two essential properties for financial applications are the projection
theorem and the Riesz representation theorem. Before presenting these re-

sults we first recall what is a convex set in a vector space.

Definition 77 Let E denote a vector space and C' a subset of E; C' is convex
if:
V(z,y) e C x C\Va € [0;1],ax+ (1 —a)ye C

First, it is important to notice that convexity can only make sense in
vector spaces because, in the definition, there is a linear combination of
vectors, ax + (1 — a)y. It is then necessary that this combination belongs
to the vector space for the definition to make sense. As a consequence, in
preceding chapters or in part 1 of the book, we could not have used convexity
in a general framework. Nevertheless, the geometric interpretation of the
convexity of a set is similar to what we proposed in R for intervals. A set is
convex if, as soon as it contains two elements z and y, it also contains the
segment joining these two elements.

Convexity is a standard assumption for consumption sets in microeco-
nomics textbooks. It only means that goods are divisible. The same as-
sumption on a set of portfolios would mean that portfolios and stocks can be

combined in non integer quantities.

1.5.2 The projection theorem

Proposition 78 Let E denote a Hilbert space and C' a non empty convex
set in E; any vector x in E has a unique projection on C, denoted x* and
satisfying:

Vye C,(r—x*,y—2") <0

x — x* is orthogonal to the tangent to C' at x*. Consequently, the angle

s

between y — x* and x — z* lies between 3

and 37” The cosine of this angle is
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then negative; but it is proportional to the inner product of the two vectors,
meaning that this inner product is also negative. These remarks do not prove
the proposition but they provide the geometric intuition for this proposition.
One of the fundamental applications of the projection theorem consists in
considering the case where C' is a vector subspace of E. It is exactly the
proposition allowing to define the conditional expectation of a random vari-
able as a projection on a subspace of the vector space of square integrable
random variables (see Probability for Finance).

The representation theorem presented below can also be interpreted with

the same geometric approach.
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1.5.3 The Riesz representation theorem

We saw in a preceding section of this chapter that a linear mapping defined
on R™ and taking values in R™ can be associated to a matrix. In particular
if m = 1, this matrix is a vector and the mapping is a linear form. In other

words, if this mapping is denoted f, we write:

f(z) = Z ;%

and the vector a’ = (ay, ..., a,) represents f. This result may be generalized

in the framework of Hilbert spaces, provided that f is continuous.

Proposition 79 Let E be a Hilbert space and f be a continuous linear form

defined on E; there exists a unique vector yy € E such that:

Ve e E, f(x) = (2,ys)

The vector y; represents the linear mapping f and the important result
is that y; belongs to E.

In a financial framework the vector y; has a natural interpretation if f
is a valuation operator linking the future payoffs of a financial security x
to its date-0 price f(z). The coordinates of y; are linked to the prices of
the Arrow-Debreu securities. We already mentioned this characteristic in

finite-dimensional spaces.

1.6 Separation theorems and Farkas lemma

1.6.1 Introductive example

Let f be a linear form defined on R?, characterized by the relation:

f(l') = Q11 + a2x9

Download free eBooks at bookboon.com


http://bookboon.com/

where 2’ = (21, x5) and ay, as are real numbers. The equation f(z) = ayz1 +
asry = 0 defines a line D in R?. Therefore, for any linear form f, the space
R? is divided in three regions denoted R;, R, and D. These regions are

characterized by:

Ve € Ry, f(x)>0
Ve € Ry, f(x) <0
Ve € D,f(z)=0

Let C denote a non empty convex set not containing 0; there exists a

linear form f, that is coefficients a; and a, satisfying:
Vee O, f(z) >0

In other words, the convex set C'is entirely in R;. This result is intuitive
because any tangent to C induces a separation such that C'is on one side of
the tangent. For a given tangent A, separing 0 and C', consider the parallel
to A containing 0. C'is entirely on one side of this parallel to A. This line
is defined by an equation like ayx1 4+ asxo = 0. If the elements x € C' satisfy
f(z) > 0, the desired result is obtained. If f(x) < 0 for x € C, it is enough

to choose the linear form ¢ defined by g(z) = — f(x) = —ay1x1 — aszs.

1.6.2 Separation theorems and Farkas lemma

The following proposition is a generalization of the approach illustrated in

the introductive example.

Proposition 80 Separation theorem
Let E be an Fuclidean vector space, C' be a non empty convexr subset of

E that does not contain the null vector. There exists a linear form f defined
on E such that for any x in C, f(x) > 0.
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The matrix expression of this separation theorem is called Farkas lemma.
We propose hereafter two versions of this lemma, the second being usually
called lemma of the alternative. This result has a beautiful financial inter-

pretation, as we will illustrate later on.

Proposition 81 Farkas lemma

Let A be a matriz with m rows and n columns; a vector x € R" satisfies
'y >0 for any y € R"™ such that Ay > 0 if and only if there exists a vector
z € (]Ri)m satisfying ©’ = 2' A.

Proposition 82 Lemma of the alternative

Let A be a matriz with m rows and n columns; one and only one of the

two following properties is true.

1. The equation Ax = 0 has a solution in R™ with all strictly positive

coordinates.

2. Inequality y' A > 0 has a solution in R™.

1.6.3 Application to no-arbitrage pricing

Consider a one-period financial market on which investors trade securities at
date 0, these securities providing random payoffs at date 7. Recall that an
arbitrage opportunity is a portfolio that costs nothing at date 0 (or maybe
the cost is negative) and pays a positive amount at date 7" in all states of
nature. Assume there are n possible states of nature and K securities traded
on the market. The date-T" payoffs are stored in a matrix D with n rows and
K columns, each column corresponding to a security and each row to a state

of nature.
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Denote IT" = (71, ...mx) the date-0 price vector; an arbitrage opportunity

is a portfolio # € R that satisfies one of the two following properties:

a) DO > 0and IT'0 <0
b)DO > 0 and IT'0 <0

The first case (a) means that the portfolio has a strictly negative cost
(I'§ < 0). Moreover, DA > 0 means that final payoffs are never negative.
Consequently, an investor characterized by a strictly increasing utility func-
tion would be ready to buy an infinite quantity of this portfolio because
holding this portfolio increases date-0 utility without decreasing date-T" ex-
pected utility.

Case (b) is a little bit more subtle. Remember that D > 0.2 Therefore,
the date-T expected utility increases by holding portfolio . But, at the
same time, IT'# < 0, meaning that date-0 utility does not decrease when
buying portfolio f. As in case (a), an investor with a strictly increasing utility
function would ask an infinite quantity of 6. In a well-functioning market,
arbitrage opportunities should disappear very quickly by price adjustments
due to excess supply or excess demand.

At a first glance, it may be difficult to see the relationship between the de-
finition of an arbitrage opportunity and the lemma of the alternative...except

that the two use matrix notations! The difficulty comes from the fact that

% Being given a matrix A, writing A > 0 means that all elements of A are positive,
A > 0 means A > 0 and at least one element is strictly positive, and finally, A >> 0
means that all elements of A are strictly positive.
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the definition of an arbitrage opportunity takes simultaneously into account
date 0 and date 7.
We are going to "forget" this specificity by defining a matrix D* which is

the concatenation of D and of —II'(minus the price vector).

dii ... dig
djg
D* =
dp1 ... dpx
| —m1 ... Tk ]

This notation allows to define an arbitrage opportunity as a vector § € R¥
satisfying:
D*0 >0 (1.18)

(]
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In fact, D*¢ > 0 means that portfolio § generates non negative cash-
flows in all states and has a non positive cost. Moreover, at least one of
the components of D*6 is strictly positive. If the last component is strictly
positive, we have a type (a) arbitrage opportunity. If this last component is
zero, one of the other components is strictly positive and we face a type (b)

arbitrage opportunity.

After transposing the two sides of inequality 1.18, we obtain:
0D >0

This inequality corresponds to part (2) of lemma 82 when applied to D*.
We just showed that arbitrage opportunities are incompatible with equilib-

rium prices. We then have to assume that D*# > 0 has no solution in 6.

As a consequence, lemma 82 implies there exists 3 € R™*! the components

of which being all strictly positive, such that:

D3 =0 (1.19)

This equality must be true because part (b) of the lemma is false....then
(a) is true!

The financial interpretation of relation 1.19 goes as follows. For the sake
of clarity, focus on the first term of D*f; it is the inner product of 5 and

of the first row of D* (which corresponds to the first security). This inner

product writes:
n+1

Z Bjd;1 -
j=1

with d3; = dj; if j < n and dj; = —m if j = n + 1. The above equality is

then equivalent to:

Zﬁjdjl = Bppm (1.20)
j=1
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Denote v; = 56 i - (these coefficients are well-defined because /,,; > 0);

relation 1.20 can be transformed in:
> ydp=m (1.21)
j=1

In the financial approach, this equality is very important because the
left-hand side contains future cash-flows and the right-hand side contains
the initial price. This equality is a typical valuation model (cash-flows on
one side, price on the other side). However, the economic interpretation of

equation 1.21 is difficult. But if we define v} = %, we obtain:
=1

(Z ’Yk) Zﬁdﬂ =T
k=1 j=1

In this formula, the 7} are positive numbers between 0 and 1 and satisfying
Z?Zl 7; = 1. They define a probability measure on the set of states of nature.
It is also remarkable that this probability measure does not depend on the
asset we considered (here we selected the first but it does not matter). It

remains to give an economic interpretation to Y, _; V.

To simplify this interpretation, assume that asset numbered 1 is a risk-

free asset paying 1 in each state, that is a zero-coupon bond. From equation
1.21 we deduce : .

Z 7 =M

j=1

The quantity Z?Zl 7, is the price of a security paying 1 at date 7" in
each state of nature. If r denotes the risk-free rate, that is the return on the

risk-free asset, we can write:

" 1
Z% - 1+7r
j=1
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It turns out that the valuation of any asset k writes:

1 <.,
e 1+r;7jdjk
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The price is then equal to the weighted average (an expectation using
probabilistic vocabulary) of future cash-flows, discounted at the risk-free rate.
Of course this interpretation can only be done when there is a risk-free asset
traded on the market. But it can be generalized if there exists a portfolio
generating strictly positive payoffs in any state of nature. Such a portfolio is

named a numéraire.

Download free eBooks at bookboon.com


http://bookboon.com/

